Objective: To evaluate the feasibility and accuracy of near-infrared fluorescence imaging technology for assessing margins during breast-conserving surgery for breast cancer.
Methods: Forty-three breast cancer patients were selected. Before the operation, the patients were administered with an indocyanine green injection of 0.5 mg/kg intravenously 2 h before operation. During and after the operation, all patients underwent surgical margin monitoring with the near-infrared fluorescence imaging system for fluorescence imaging and acquisition of images and quantitative fluorescence intensity. During the operation, the patients’ tissue specimens were collected on the upper, lower, inner, outer, apical, and basal sides of the fluorescence boundary of the isolated lesions for pathological examination.
Results: Fluorescence was detected in the primary tumor in all patients. The average fluorescence intensities of tumor tissue, peritumoral tissue, and normal tissue were 219.41 ± 32.81, 143.35 ± 17.37, and 105.77 ± 17.79 arbitrary units, respectively (P < 0.05, t test). The signal-to-background ratio of tumor to peritumor tissue and normal tissue was 1.54 ± 0.20 and 2.14 ± 0.60, respectively (P < 0.05, t test). Abnormal indocyanine green fluorescence was detected in 11.6% patients (5/43), including 3 patients with residual infiltrating carcinoma and 2 patients with adenosis with ductal dilatation.
Conclusion: This study confirms the high sensitivity and specificity of near-infrared fluorescence imaging technology for breast-conserving surgery margin assessment. Near-infrared fluorescence imaging technology can be used as an intraoperative diagnosis and treatment tool to accurately determine the surgical margin and is of important guiding value in breast-conserving surgery for breast cancer.
https://wjso.biomedcentral.com/articles/10.1186/s12957-022-02827-4